If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-34y+15=0
a = 15; b = -34; c = +15;
Δ = b2-4ac
Δ = -342-4·15·15
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-16}{2*15}=\frac{18}{30} =3/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+16}{2*15}=\frac{50}{30} =1+2/3 $
| 10x+24=6x | | 10x*24=6x | | 18x+3=66 | | 4x+38=193 | | 5x-6=7x-26 | | 9×1÷4=y-1×1÷3 | | -7(1x+6)=42 | | x+45=30 | | 2-3a+7=8a+3-8 | | 3x-1/2-5×+4/3-×+2/8=2×-3/5-1/10 | | h(-5)=5(-5)+3 | | 4x/3+145=360 | | 4x/3+145=37 | | (x*x)+100x-9600=0 | | x^2-1331√11/√x=0 | | 60+(x+20)+(2x+5)=180 | | ¼=m-8÷3 | | ¼=m-8/3 | | 18x+3=66÷2 | | 4y+10=-1y-10 | | -9+3k=12 | | 3x+4-13=-8+9x+5 | | 2-8x=30-12x | | -2x+9=-5x+30 | | 122-x=1 | | 16/4=x18 | | 16/2=x/5 | | 1=1-5c-7c | | 2(x+5)=x+20+5 | | -15x+6-11=-8-10x+18 | | 9x+5=8x+13 | | 1x+(8/9x)=12 |